2,666 research outputs found

    Performance Considerations for Gigabyte per Second Transcontinental Disk-to-Disk File Transfers

    Full text link
    Moving data from CERN to Pasadena at a gigabyte per second using the next generation Internet requires good networking and good disk IO. Ten Gbps Ethernet and OC192 links are in place, so now it is simply a matter of programming. This report describes our preliminary work and measurements in configuring the disk subsystem for this effort. Using 24 SATA disks at each endpoint we are able to locally read and write an NTFS volume is striped across 24 disks at 1.2 GBps. A 32-disk stripe delivers 1.7 GBps. Experiments on higher performance and higher-capacity systems deliver up to 3.5 GBps

    Consensus on Transaction Commit

    Full text link
    The distributed transaction commit problem requires reaching agreement on whether a transaction is committed or aborted. The classic Two-Phase Commit protocol blocks if the coordinator fails. Fault-tolerant consensus algorithms also reach agreement, but do not block whenever any majority of the processes are working. Running a Paxos consensus algorithm on the commit/abort decision of each participant yields a transaction commit protocol that uses 2F +1 coordinators and makes progress if at least F +1 of them are working. In the fault-free case, this algorithm requires one extra message delay but has the same stable-storage write delay as Two-Phase Commit. The classic Two-Phase Commit algorithm is obtained as the special F = 0 case of the general Paxos Commit algorithm.Comment: Original at http://research.microsoft.com/research/pubs/view.aspx?tr_id=70
    corecore